692 research outputs found

    Byzantine Fault Tolerance for Distributed Systems

    Get PDF
    The growing reliance on online services imposes a high dependability requirement on the computer systems that provide these services. Byzantine fault tolerance (BFT) is a promising technology to solidify such systems for the much needed high dependability. BFT employs redundant copies of the servers and ensures that a replicated system continues providing correct services despite the attacks on a small portion of the system. In this dissertation research, I developed novel algorithms and mechanisms to control various types of application nondeterminism and to ensure the long-term reliability of BFT systems via a migration-based proactive recovery scheme. I also investigated a new approach to significantly improve the overall system throughput by enabling concurrent processing using Software Transactional Memory (STM). Controlling application nondeterminism is essential to achieve strong replica consistency because the BFT technology is based on state-machine replication, which requires deterministic operation of each replica. Proactive recovery is necessary to ensure that the fundamental assumption of using the BFT technology is not violated over long term, i.e., less than one-third of replicas remain correct. Without proactive recovery, more and more replicas will be compromised under continuously attacks, which would render BFT ineffective. STM based concurrent processing maximized the system throughput by utilizing the power of multi-core CPUs while preserving strong replication consistenc

    Byzantine Fault Tolerance for Distributed Systems

    Get PDF
    The growing reliance on online services imposes a high dependability requirement on the computer systems that provide these services. Byzantine fault tolerance (BFT) is a promising technology to solidify such systems for the much needed high dependability. BFT employs redundant copies of the servers and ensures that a replicated system continues providing correct services despite the attacks on a small portion of the system. In this dissertation research, I developed novel algorithms and mechanisms to control various types of application nondeterminism and to ensure the long-term reliability of BFT systems via a migration-based proactive recovery scheme. I also investigated a new approach to significantly improve the overall system throughput by enabling concurrent processing using Software Transactional Memory (STM). Controlling application nondeterminism is essential to achieve strong replica consistency because the BFT technology is based on state-machine replication, which requires deterministic operation of each replica. Proactive recovery is necessary to ensure that the fundamental assumption of using the BFT technology is not violated over long term, i.e., less than one-third of replicas remain correct. Without proactive recovery, more and more replicas will be compromised under continuously attacks, which would render BFT ineffective. STM based concurrent processing maximized the system throughput by utilizing the power of multi-core CPUs while preserving strong replication consistenc

    Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions

    Get PDF
    This thesis describes a Byzantine fault tolerant coordination framework for Web services atomic transactions. In the framework, all core services, including transaction activation, registration, completion, and distributed commit, are replicated and protected by Byzantine fault tolerance mechanisms. The traditional two-phase commit protocol is extended by a Byzantine fault tolerant version that can tolerate arbitrary faults on the coordinator and the initiator sides, and some types of malicious faults on the participant side. To achieve Byzantine fault tolerance in an efficient manner, and to limit the types of malicious behaviors of the coordinator, a novel decision certificate is introduced. The decision certificate includes a signed copy of the participants\u27 vote records, and it is piggybacked with all decision notifications to the participants for each participant to verify the legitimacy of the decision. The Byzantine fault tolerance mechanisms, together with the extended two-phase commit protocol, have been incorporated into an open-source framework supporting the standard Web services atomic transactions specification. Performance characterizations of the framework show that the implementation is fairly efficient. Such a Byzantine fault tolerant coordination framework can be useful for many transactional Web services that require a high degree of security and dependabilit

    STUDY ON SPATIAL STRESS EFFECT OF PC CONTINUOUS THIN-WALLED BOX GIRDER BRIDGE

    Get PDF
    In order to study the influence of spatial stress effect and shear lag effect on the cracking of PC continuous thin-walled box girder bridge, a spatial model was established by using ANSYS finite element software to analyze the internal stress distribution of the bridge. The test results are compared with the analysis results of spatial model and plane link system model through the load test of real bridge. The results show that the longitudinal stress is evenly distributed along the width direction, which means that the spatial stress effect and the shear lag effect have little influence on the downdeflection of the bridge. The shear lag coefficient at the longitudinal axis of midspan bottom plate and the intersection of bottom plate and web are larger than other positions, which is most likely to produce cracks caused by stress concentration, and should be strengthened here in practical engineering. The results of load test show that the results of spatial finite element analysis are more reliable than those of plane link system calculation, and the design and construction based on the results of spatial finite element analysis is safer

    Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions

    Get PDF
    This thesis describes a Byzantine fault tolerant coordination framework for Web services atomic transactions. In the framework, all core services, including transaction activation, registration, completion, and distributed commit, are replicated and protected by Byzantine fault tolerance mechanisms. The traditional two-phase commit protocol is extended by a Byzantine fault tolerant version that can tolerate arbitrary faults on the coordinator and the initiator sides, and some types of malicious faults on the participant side. To achieve Byzantine fault tolerance in an efficient manner, and to limit the types of malicious behaviors of the coordinator, a novel decision certificate is introduced. The decision certificate includes a signed copy of the participants\u27 vote records, and it is piggybacked with all decision notifications to the participants for each participant to verify the legitimacy of the decision. The Byzantine fault tolerance mechanisms, together with the extended two-phase commit protocol, have been incorporated into an open-source framework supporting the standard Web services atomic transactions specification. Performance characterizations of the framework show that the implementation is fairly efficient. Such a Byzantine fault tolerant coordination framework can be useful for many transactional Web services that require a high degree of security and dependabilit

    Concurrent Byzantine Fault Tolerance for Software-Transactional-Memory Based Applications

    Get PDF
    Typical Byzantine fault tolerance algorithms require the application requests to be executed sequentially, which may severely limit the throughput of the system considering that modern CPUs are equipped with multiple processing cores. In this paper, we present the design and implementation of a Byzantine fault tolerance framework for software-transactional-memory based applications that aims to maximize concurrent processing while preserving strong replica consistency. The approach is based on the idea of committing concurrent transactions according to the total order of the requests that triggered the transactions. A comprehensive performance evaluation is carried out to characterize the effectiveness and limitations of this approach

    STUDY ON REMOTE INTELLIGENT MONITORING SYSTEM OF SLOPE BASED ON SARMA ALGORITHM AND ARCGIS

    Get PDF
    Firstly, a typical slope on Liu-An highway was selected as the research object. Then, based on the Sarma algorithm and considering the influence factors such as inhomogeneous boundary conditions, water content and reinforcement Angle, A slope stability analysis system based on the improved Sarma algorithm is developed to build an engineering geological model and a remote intelligent monitoring system platform for the slope. On this basis, we select the slope of typical road sections for remote monitoring and pre-warning. ArcGIS technology is used to carry out difference analysis of monitoring data, realize GIS 3D visualization, and verify the 3D visualization monitoring effect of the system. The results show that the system is stable and reliable. The range and precision meet the specification requirements, and can effectively realize the 3D visualization monitoring of highway slope. It can also realize four-level pre-warning, which lays a foundation for the long-term safe operation of highway

    Outlier edge detection using random graph generation models and applications

    Get PDF
    Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Detecting outlier nodes and edges is important for data mining and graph analytics. However, previous research in the field has merely focused on detecting outlier nodes. In this article, we study the properties of edges and propose effective outlier edge detection algorithm. The proposed algorithms are inspired by community structures that are very common in social networks. We found that the graph structure around an edge holds critical information for determining the authenticity of the edge. We evaluated the proposed algorithms by injecting outlier edges into some real-world graph data. Experiment results show that the proposed algorithms can effectively detect outlier edges. In particular, the algorithm based on the Preferential Attachment Random Graph Generation model consistently gives good performance regardless of the test graph data. More important, by analyzing the authenticity of the edges in a graph, we are able to reveal underlying structure and properties of a graph. Thus, the proposed algorithms are not limited in the area of outlier edge detection. We demonstrate three different applications that benefit from the proposed algorithms: (1) a preprocessing tool that improves the performance of graph clustering algorithms; (2) an outlier node detection algorithm; and (3) a novel noisy data clustering algorithm. These applications show the great potential of the proposed outlier edge detection techniques. They also address the importance of analyzing the edges in graph mining—a topic that has been mostly neglected by researchers.Academy of Finland supported this research
    corecore